Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Context. The Milky Way’s central molecular zone (CMZ) has been measured to form stars ten times less efficiently than in the Galactic disk, based on emission from high-mass stars. However, the CMZ’s low-mass (⩽2M⊙) protostellar population, which accounts for most of the initial stellar mass budget and star formation rate (SFR), is poorly constrained observationally due to limited sensitivity and resolution. Aims. We aim to perform a cloud-wide census of the protostellar population in three massive CMZ clouds. Methods. We present the Dual-band Unified Exploration of three CMZ Clouds (DUET) survey, targeting the 20 km s−1cloud, Sgr C, and the dust ridge cloud “e” using the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 and 3 mm. The mosaicked observations achieve a comparable resolution of 0.′′2–0.′′3 (∼2000 au) and a sky coverage of 8.3–10.4 arcmin2, respectively. Results. We report 563 continuum sources at 1.3 mm and 330 at 3 mm, respectively, and a dual-band catalog with 450 continuum sources. These sources are marginally resolved at a resolution of 2000 au. We find a universal deviation (>70% of the source sample) from commonly used dust modified blackbody (MBB) models, characterized by either low spectral indices or low brightness temperatures. Conclusions. Three possible explanations are discussed for the deviation. (1) Optically thick class 0/I young stellar objects (YSOs) with a very small beam filling factor can lead to lower brightness temperatures than what MBB models predict. (2) Large dust grains with millimeter or centimeter in size have more significant self-scattering, and frequency-dependent albedo could therefore cause lower spectral indices. (3) Free-free emission over 30 μJy can severely contaminate dust emission and cause low spectral indices for milliJansky sources, although the number of massive protostars (embedded UCHIIregions) needed is infeasibly high for the normal stellar initial mass function. A reliable measurement of the SFR at low protostellar masses will require future work to distinguish between these possible explanations.more » « lessFree, publicly-accessible full text available May 1, 2026
-
We present the highest-resolution (~0.04") Atacama Large Millimeter/submillimeter Array 1.3 mm continuum observations so far of three massive star-forming clumps in the Central Molecular Zone (CMZ), namely 20 km/s C1, 20 km/sC4, and Sgr C C4, which reveal prevalent compact millimeter emission. We extract the compact emission with astrodendro and identify a total of 199 fragments with a typical size of ∼370 au, which represent the first sample of candidates of protostellar envelopes and disks and kernels of prestellar cores in these clumps that are likely forming star clusters. Compared with the protoclusters in the Galactic disk, the three protoclusters display a higher level of hierarchical clustering, likely a result of the stronger turbulence in the CMZ clumps. Compared with the mini-starbursts in the CMZ, Sgr B2 M and N, the three protoclusters also show stronger subclustering in conjunction with a lack of massive fragments. The efficiency of high-mass star formation of the three protoclusters is on average 1 order of magnitude lower than that of Sgr B2 M and N, despite a similar overall efficiency of converting gas into stars. The lower efficiency of high-mass star formation in the three protoclusters is likely attributed to hierarchical cluster formation.more » « lessFree, publicly-accessible full text available March 13, 2026
-
Abstract G10.21-0.31 is a 70 μ m dark high-mass starless core ( M > 300 M ⊙ within r < 0.15 pc) identified in the Spitzer, Herschel, and APEX continuum surveys, and is believed to harbor the initial stages of high-mass star formation. We present Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array observations to resolve the internal structure of this promising high-mass starless core. Sensitive high-resolution ALMA 1.3 mm dust continuum emission reveals three cores of mass ranging within 11–18 M ⊙ , characterized by a turbulent fragmentation. Cores 1, 2, and 3 represent a coherent evolution of three different stages, characterized by outflows (CO and SiO), gas temperature (H 2 CO), and deuteration (N 2 D + /N 2 H + ). We confirm the potential for formation of high-mass stars in G10.21 and explore the evolution path of high-mass star formation. Yet, no high-mass prestellar core is present in G10.21. This suggests a dynamical star formation where cores grow in mass over time.more » « less
-
Abstract A compact source, G0.02467–0.0727, was detected in Atacama Large Millimeter/submillimeter Array 3 mm observations in continuum and very broad line emission. The continuum emission has a spectral indexα≈ 3.3, suggesting that the emission is from dust. The line emission is detected in several transitions of CS, SO, and SO2and exhibits a line width FWHM ≈ 160 km s−1. The line profile appears Gaussian. The emission is weakly spatially resolved, coming from an area on the sky ≲1″ in diameter (≲104au at the distance of the Galactic center, GC). The centroid velocity isvLSR≈ 40–50 km s−1, which is consistent with a location in the GC. With multiple SO lines detected, and assuming local thermodynamic equilibrium (LTE) conditions, the gas temperature isTLTE= 13 K, which is colder than seen in typical GC clouds, though we cannot rule out low-density, subthermally excited, warmer gas. Despite the high velocity dispersion, no emission is observed from SiO, suggesting that there are no strong (≳10 km s−1) shocks in the molecular gas. There are no detections at other wavelengths, including X-ray, infrared, and radio. We consider several explanations for the millimeter ultra-broad-line object (MUBLO), including protostellar outflow, explosive outflow, a collapsing cloud, an evolved star, a stellar merger, a high-velocity compact cloud, an intermediate-mass black hole, and a background galaxy. Most of these conceptual models are either inconsistent with the data or do not fully explain them. The MUBLO is, at present, an observationally unique object.more » « less
An official website of the United States government
